中华人民共和国国家计量技术规范

JJF XXXX－20XX

恒温恒湿实验室环境参数校准规范

Calibration Specification for Environment Parameters of Constant

temperature and humidity laboratory

（征求意见稿）

20XX－XX－XX 发布 20XX－XX－XX 实施

国家市场监督管理总局 发布
恒温恒湿实验室环境参数校准规范

Calibration Specification for Environment Parameters of Constant temperature and humidity laboratory

归口单位：全国温度计量技术委员会

主要起草单位：浙江省计量科学研究院

参加起草单位：“

本规范委托全国温度计量技术委员会负责解释
本规范主要起草人:

参加起草人:
目 录

引言... II
1 范围... 1
2 引用文件.. 1
3 术语... 1
4 概述... 2
5 计量特性.. 2
6 校准条件.. 2
6.1 环境条件.. 3
6.2 负载条件.. 3
6.3 测量标准及其他设备... 3
7 校准项目和校准方法... 4
7.1 校准项目.. 4
7.2 温度、湿度的测量方法... 4
7.3 其他参数的测量... 6
7.4 数据处理... 8
8 校准结果表达... 10
9 复校时间间隔... 11
附录 A... 12
附录 B... 15
附录 C... 16
引言

本规范是以JJF 1071-2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》和JJF 1059.1-2012《测量不确定度评定与表示》为基础性系列规范进行编写。

本规范为首次制定。
恒温恒湿实验室环境参数校准规范

1 范围

本规范适用于恒温恒湿实验室（以下简称实验室）环境参数的校准，不适用于生物安全实验室以及医学实验室的校准。

2 引用文件

本规范引用了下列文件:
GB 50073-2013 《洁净厂房设计规范》
GB 50243-2016 《通风与空调工程施工质量验收规范》
GB 51110-2015 《洁净厂房施工及质量验收规范》
GB/T 10739-2002 《纸、纸板和纸浆试样处理和试验的标准大气条件》
GB/T 5700-2008 《照明测试方法》
T/CECS 644-2019 《恒温恒湿实验室工程技术规程》
JJF 1101-2019 《环境试验设备温度、湿度参数校准规范》

凡是注日期的引用文件，仅注日期的版本适用于本规范；凡是不注日期的引用文件，其最新版本（包括所有的修改单）适用于本规范。

3 术语

3.1 恒温恒湿实验室 constant temperature and humidity laboratory
提供一种或一种以上环境参数，包括但不限于恒定温度与恒定湿度的实验室。

3.2 工作空间 working space
实验室中能将规定的温度、湿度或其他参数保持在规定偏差范围内的那部分空间。

3.3 稳定状态 steady state of testing equipment
实验室工作空间内任意点的温度、湿度或其他参数变化量达到设备本身性能指标要求时的状态。

3.4 温度偏差 temperature deviation
实验室稳定状态下，工作空间各测量点在规定时间内实测最高温度和最低温度与设定温度的上下偏差。温度偏差包含温度上偏差和温度下偏差。
3.5 湿度偏差 relative humidity deviation

实验室稳定状态下，工作空间各测量点在规定时间内实测最高湿度和最低湿度与设定湿度的上下偏差。湿度偏差包含湿度上偏差和湿度下偏差。

3.6 短期稳定性 short term stability

同一测量点 24h 内可划分出 48 个 30min，计算每个测量点每个 30min 内 15 次测量值（每 2min 采集一次）的极差，所有测量点极差中的最大值为短期稳定性。

3.7 长期稳定性 long term stability

同一测量点 24h 内可划分出 48 个 30min，计算每个测量点每个 30min 内 15 次测量值（每 2min 采集一次）的平均值的极差，所有测量点平均值极差中的最大值为长期稳定性。

3.8 温度均匀度 temperature uniformity

实验室稳定状态下，工作空间在任一瞬时任意两点温度之间的最大差值。

3.9 湿度均匀度 relative humidity uniformity

实验室稳定状态下，工作空间在任一瞬时任意两点湿度之间的最大差值。

3.10 空态 as-built

实验室的设施已建成，所有动力接通并运行，但无工作设施设备及工作人员。

4 概述

恒温恒湿实验室是模拟多种环境参数，并且能够提供恒定温度与恒定湿度，所提供的各个参数满足实验条件要求的工作场所。根据模拟环境因素类别的不同，实验室可以分为恒温实验室、恒温恒湿实验室；根据实验室的级别，又可以分为普通实验室与高精度实验室。实验室空调系统主要由空调冷、热源机组、末端空气处理机组、空调送、回风系统、新风系统等部分组成。

实验室的主要作用是提供所需求的实验条件，满足检测、科研工作或各种类型实验的要求，是进行实验的基本条件和保障。

5 计量特性

实验室的环境参数主要包含温湿度偏差、温湿度短期稳定性、温湿度长期稳定性、温湿度均匀度、照度、工作区截面风速、风量、空气洁净度等级、噪声、静压差等，其技术要求主要依据使用方与实验室设计施工方所签订的技术协议，或者由使用方的实际需求提出。

6 校准条件
6.1 环境条件

温度：15 ℃~35 ℃；
湿度：不大于 85% RH；
气压：80 kPa~1060 kPa。

6.2 负载条件

一般在空态条件下校准。也可根据用户需要在负载条件下进行校准，但应说明负载的情况。

6.3 测量标准及其他设备

6.3.1 温度测量标准

温度测量标准一般采用多通道温度测量装置或具有多点温度测量功能的设备，传感器一般采用铂电阻，也可采用其他满足要求的传感器，数量不少于 5 个。

（1）测量范围：应覆盖实验室温度控制的范围；
（2）分辨力：应优于 0.1 ℃（当实验室温度偏差要求优于±0.5 ℃，分辨力应优于 0.01 ℃）；
（3）不确定度：应不超过实验室温度偏差要求的 1/3；
（4）其他要求：各通道应采用同种型号规格的温度传感器。

6.3.2 湿度测量标准

湿度测量一般采用多通道湿度测量装置或具有多点湿度测量功能的设备，传感器数量不少于 5 个，不建议采用干湿球法。

（1）测量范围：（10~90% RH）；
（2）分辨力：应优于 0.1 % RH；
（3）最大允许误差：±1.5% RH；
（4）其他要求：各通道应采用同种型号规格的湿度传感器。

6.3.3 照度测量仪器

采用（光）照度计测量照度，测量范围（0~1000）lx，准确度等级 1 级，分辨力 0.1 lx。

6.3.4 工作区截面风速测量仪器

采用热球式数字风速仪测量风速，测量范围（0.1~20）m/s，最大允许误差±2%F.S，分辨力 0.1 m/s。

6.3.5 风量测量仪器

采用 6.3.4 规定的风速仪或者风量罩进行测量。风量罩的尺寸应能够覆盖整个出风口，
测量范围（0~1500）m³/h，最大允许误差±5% F.S.，分辨力 1 m³/h。

6.3.6 空气洁净度等级测量仪器

采用激光粒子尘埃计数器测量空气中的尘埃粒子数。激光粒子尘埃计数器可分析的粒径大小包含 0.1 μm，0.3 μm，0.5 μm，1.0 μm，5.0 μm；采样量 28.3L/min；准确度等级 10 级。

6.3.7 噪声测量仪器

采用（带倍频程分析的）声级计测量 A 声压级噪声，测量范围（0~100）dBA，准确度等级 2 级，分辨力 0.1dBA。

6.3.8 静压差测量仪器

采用电子微压计或斜管微压计测量静压差，测量范围（0.1~50）Pa，准确度等级 1 级，分辨力 1.0Pa。

7 校准项目和校准方法

7.1 校准项目

根据实验室的设计要求以及使用方的使用需求确定，一般包含温湿度偏差、温湿度短期稳定性、温湿度长期稳定性、温湿度均匀度、照度、工作区截面风速、风量、空气洁净度等级、噪声、静压差等校准项目。

7.2 温度、湿度的测量方法

7.2.1 温度、湿度测量点的选择

一般根据实验室使用方的使用需求选择常用的温度、湿度点进行测量。

7.2.2 传感器测量点的位置和数量

传感器测量点的位置和数量可根据用户实际工作需求以及实验室的设计空间进行布置。最常见实验室传感器测量点的位置和数量可按照以下方式布设:

（1）若实验室面积≤50 m²，则至少在不同位置布置 5 个温湿度测量点。5 个测量点应布置在 3 个高度上，分别为 (2.2±0.1)m，(1.5±0.1)m 和(0.8±0.1)m，或根据房间实际高度设计分层布点高度，距离实验室四壁距离≥0.5m；而且这 5 个测量点应呈立体对角线分布，其中中心点的高度应为(1.5±0.1)m。布点示例如图 1 所示。

（2）若实验室面积＞50m²，则每增加 20 m²，增加 3 个温湿度测量点，测量点水平距离≤2 m。布点示例如图 2 所示。
图 1 布点示例图（实验室面积小于等于 50 m²）

以面积为 90 m² 的实验室为例，温湿度测量点个数以及布点图，可参考图 3-1 以及图 3-2。

图 2 布点示例图（实验室面积为 90 m²）每增加 20 m² 空间，增加 3 个点

图 3-1 实验室分层高度立体图（实验室面积为 90 m²）
图 3-2 实验室立体图（实验室面积为 90 m²）

7.2.3 温湿度的测量

将实验室设定到需测量的温湿度点，开启恒温恒湿控制系统，待实验室内温湿度已经达到稳定状态或连续运行 24 小时后，按照 7.2.2 规定布放温湿度传感器，待实验室重新达到稳定状态后开始记录各测量点的温湿度。记录时间间隔为 2min，连续记录 24 小时的数据，或根据实验室使用方的使用需求确定时间间隔和记录时长，并在原始记录和校准证书中进行说明。

7.3 其他参数的测量

其他参数的测量方法均可参照对应的国家标准，也可以根据使用方的要求进行测量，测量时应给出每个参数的测量点位置。

7.3.1 照度的测量

（1）照度采用矩形网格的方式进行测量。将测量区域按 2m 的边长划分为若干个正方形，在每个正方形网格中心位置布置测量点。

（2）测量点距离地面 0.8m，不能产生人为的遮挡。

（3）测量时，（光）照度计的感光平面应水平放置，测量该点上的垂直照度。

（4）记录每个测量点上的垂直照度值，取最小值作为最终结果。

7.3.2 工作区截面风速的测量

（1）布点方式与照度测量相同。

（2）每个测量点的测量有效时间不应少于 10s，记录期间内的最大值。

（3）取每个测量点记录值的最大值最为最终结果。

7.3.3 风量的测量

对实验室内每一个出风口均要进行风量的测量，记录每一个测量值，所有测量值的总和即为该实验室的风量。风量与实验室实际体积的比值，即为实验室每小时的换气次数。
可选用风口风速法或风量罩法测量风量。

7.3.3.1 采用风口风速法测量风量

（1）在风口出口平面上，风速测量点不应少于 6 点，并应均匀分布。
（2）取 6 个点测量值的算术平均值作为该出风口的风速。
（3）风速与出风口截面有效面积的乘积为该出风口的风量。

7.3.3.2 采用风量罩法测量风量

应选择与出风口面积较接近的风量罩罩体，罩口面积不得大于 4 倍出风口面积，且罩体长边不得大于出风口长边的 2 倍。出风口应位于罩体的中间位置，罩口与出风口所在的平面应紧密接触，不漏风。

7.3.4 空气洁净度等级的测量方法

7.3.4.1 测量点的数量和位置

（1）测量点的数量

当实验室面积不大于 110 m² 时，最低限度的测量点应符合表 1 的要求；当实验室的面积大于 110 m² 时，可按下面公式确定：

\[N_L = \sqrt{A} \]

式中：A—实验室面积，m²。

\(N_L \) — 最低限度的测量点数，个。

注：\(N_L \) 为整数，计算结果不为整数时，采取直接进位原则。

表 1 最低限度的测量点数

<table>
<thead>
<tr>
<th>实验室面积 (A) (m²)</th>
<th>2.1~6.0</th>
<th>6.1~12.0</th>
<th>12.1~20.0</th>
<th>20.1~30.0</th>
<th>30.1~42.0</th>
<th>42.1~56.0</th>
<th>56.1~72.0</th>
<th>72.1~90.0</th>
<th>90.1~110.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量点个数 (N_L) (个)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

（2）测量点的位置

测量点应均匀分布于整个面积内，每个测量点位于距离地面 0.8m 的水平面上。

7.3.4.2 空气洁净度等级的测量

（1）每个测量点的最少采样时间为 1min，测量时实验室内不能多于 3 人。
（2）当实验室的测量点数少于 3 个时，每个测量点的测量次数为 2 次；当实验室的测量点数多于 3 个时，每个测量点的测量次数为 1 次。
（3）分别记录各测量点上≥0.5 μm 以及≥5.0 μm 的粒径个数。当实验室内测量点个数为 2~9 个时，应计算每个测量点的平均粒子浓度值、全部采样点的平均粒子浓度值以及标准
差，导出 95%置信上限值；当测量点个数超过 9 个时，可采用算术平均值作为置信上限值。

7.3.5 噪声的测量
 （1）测量时，实验室应为空态或与使用方协商确定的状态，并测量 A 声压级的数据，当有特殊需要时，可采用噪声频谱的测量和分析。
 （2）测量点布置应按实验室面积均分，当实验室面积小于 50m² 时，布置 1 个测量点，每增加 50m² 应增加一个测量点。
 （3）测量点应位于每个区域的几何中心位置，距离地面高度应为 1.1m~1.5m，距离操作者不应小于 0.5m，距离墙面或其他主要反射面不应小于 1m。
 （4）分别记录每个测量点测得的噪声值，取最大值作为最终结果。

7.3.6 静压差的测量
 （1）测量时，实验室所有的隔断、门窗均应密闭。
 （2）在实验室送、回、排风量均符合设计要求的条件下，由高压向低压，由平面布置上距室外最远的里房间开始，依次向外测量。
 （3）测量时应注意使测压管的关口不受气流影响。
 （4）分别记录每两个房间之间的静压差值。

7.4 数据处理
7.4.1 温度数据处理
7.4.1.1 温度偏差：

\[\Delta t_{\text{max}} = t_{\text{max}} - t_{S} \] \hspace{1cm} (1)

\[\Delta t_{\text{min}} = t_{\text{min}} - t_{S} \] \hspace{1cm} (2)

式中：\(\Delta t_{\text{max}} \) ——温度上偏差，℃
 \(\Delta t_{\text{min}} \) ——温度下偏差，℃
 \(t_{\text{max}} \) ——各测量点规定时间内测量的最高温度，℃
 \(t_{\text{min}} \) ——各测量点规定时间内测量的最低温度，℃
 \(t_{S} \) ——实验室设定温度，℃

7.4.1.2 温度均匀度：

\[\Delta t_{u} = t_{\text{max}} - t_{\text{min}} \] \hspace{1cm} (3)

式中：\(\Delta t_{u} \) ——温度均匀度，℃
 \(t_{i, \text{max}} \) ——第 \(i \) 次测得的最高温度，℃
7.4.1.3 温度短期稳定性

同一温度测量点 24h 内可划分出 48 个 30min，计算每个测量点 30min 内的 16 次测量值的极差，所有测量点极差中的最大值为 30min 内温度短期稳定性。

\[t_{s\text{-max}} = t_{\text{max-30min}} - t_{\text{min-30min}} \] .. (4)

式中：
\(t_{s\text{-max}} \) ——温度短期稳定性，℃
\(t_{\text{max-30min}} \) ——同一测量点测得的 30min 内最高温度，℃
\(t_{\text{min-30min}} \) ——同一测量点测得的 30min 内最低温度，℃

7.4.1.4 温度长期稳定性

同一温度测量点 24h 内可划分出 48 个 30min，计算每个测量点 30min 内的 16 次测量值的平均值的极差，所有测量点极差中的最大值为 24h 内温度长期稳定性。

\[t_{L\text{-max}} = t_{\text{max-ave}} - t_{\text{min-ave}} \] .. (5)

式中：
\(t_{L\text{-max}} \) ——温度长期稳定性，℃
\(t_{\text{max-ave}} \) ——同一测量点测得的 24h 内 48 个 30min 温度平均值的最大值，℃
\(t_{\text{min-ave}} \) ——同一测量点测得的 24h 内 48 个 30min 温度平均值的最小值，℃

7.4.2 湿度数据处理

7.4.2.1 湿度偏差:

\[\Delta h_{\text{max}} = h_{\text{max}} - h_s \] .. (6)

\[\Delta h_{\text{min}} = h_{\text{min}} - h_s \] .. (7)

式中：
\(\Delta h_{\text{max}} \) ——湿度上偏差，%RH
\(\Delta h_{\text{min}} \) ——湿度下偏差，%RH
\(h_{\text{max}} \) ——各测量点规定时间内测量的最高湿度，%RH
\(h_{\text{min}} \) ——各测量点规定时间内测量的最低湿度，%RH
\(h_s \) ——实验室设定湿度，%RH

7.4.2.2 湿度均匀度:

\[\Delta h_s = h_{\text{max}} - h_{\text{min}} \] .. (3)
式中： Δh_h ——湿度均匀度，%RH

$$h_{\text{max}}$$ ——第 i 次测得的最高湿度，%RH

$$h_{\text{min}}$$ ——第 i 次测得的最低湿度，%RH

7.4.2.3 湿度短期稳定性

同一湿度测量点 24h 内可划分出 48 个 30min，计算每个测量点 30min 内的 16 次测量值的极差，所有测量点极差中的最大值为 30min 内湿度短期稳定性。

$$h_{s-\text{max}} = h_{\text{max}-30\text{min}} - h_{\text{min}-30\text{min}}$$ (9)

式中： $h_{s-\text{max}}$ ——湿度短期稳定性，%RH

$$h_{\text{max}-30\text{min}}$$ ——同一测量点测得的 30min 内最高湿度，%RH

$$h_{\text{min}-30\text{min}}$$ ——同一测量点测得的 30min 内最低湿度，%RH

7.4.2.4 湿度长期稳定性

同一湿度测量点 24h 内可划分出 48 个 30min，计算每个测量点 30min 内的 16 次测量值的平均值的极差，所有测量点极差中的最大值为 24h 内湿度长期稳定性。

$$h_{L-\text{max}} = h_{\text{max-ave}} - h_{\text{min-ave}}$$ (10)

式中： $h_{L-\text{max}}$ ——湿度长期稳定性，%RH

$$h_{\text{max-ave}}$$ ——同一测量点测得的 24h 内 48 个 30min 湿度平均值的最大值，%RH

$$h_{\text{min-ave}}$$ ——同一测量点测得的 24h 内 48 个 30min 湿度平均值的最小值，%RH

8 校准结果表达

经校准的实验室出具校准证书，校准证书至少应包括以下信息：

a）标题“校准证书”；

b）实验室名称和地址；

c）进行校准的地点（如果与实验室的地址不同）；

d）证书的唯一性标识（如编号），每页及总页数的标识；

e）客户的名称和地址；

f）被校对象的描述和明确标识；

g）进行校准的日期；

h）校准所依据的技术规范的标识，包括名称及代号；

i）本次校准所用测量标准的溯源性及有效性说明；

j）校准环境的描述；
9 复校时间间隔

建议复校间隔时间为一年，使用特别频繁时应适当缩短。凡在使用过程中经过修理、更换重要器件等的一般需重新校准。

由于复校间隔时间的长短是由实验室的使用情况、使用者、实验室质量等因素所决定，因此，用户可根据实际使用情况确定复校时间间隔。
附录 A

恒温恒湿实验室环境参数校准记录参考格式

委托单位：_____________实验室名称：_____________证书编号：_____________
制造厂：_____________型号规格：_____________出厂编号：_____________
校准地点：_____________环境温度：__________℃环境湿度：__________%RH

标准器名称 型号/规格 准确度等级
证书编号 有效期至 设备编号 溯源机构

1. 测量点分布示意图

 (2.2±0.1)m 高度层

 (1.5±0.1)m 高度层

 (0.8±0.1)m 高度层

 1
 2
 门
 5
 门
 3
 4
 门
 门

2. 温度参数校准记录（第 个 30min）

<table>
<thead>
<tr>
<th>次数</th>
<th>设备仪器表示值</th>
<th>温度（℃）</th>
<th>最大值</th>
<th>最小值</th>
<th>均匀度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>……</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>修正值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上偏差</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下偏差</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>均匀度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>短期稳定性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>长期稳定性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

单位：（℃）
3. 湿度参数校准记录表（第 个 30min）

<table>
<thead>
<tr>
<th>次数</th>
<th>设备仪表示值</th>
<th>湿度（%RH）</th>
<th>最大值</th>
<th>最小值</th>
<th>均匀度</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>修正值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>上偏差</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>下偏差</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>均匀度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 其他参数测量记录表

4.1 照度

<table>
<thead>
<tr>
<th>测量点</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量值（lx）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 工作区截面风速

<table>
<thead>
<tr>
<th>测量点</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量值（m/s）</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 风量（风量罩法）

<table>
<thead>
<tr>
<th>送风口编号</th>
<th>风量(m³/h)</th>
<th>平均值(m³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>......</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总风量 =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 空气洁净度
<table>
<thead>
<tr>
<th>粒径</th>
<th>次数</th>
<th>测量点</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>平均值(A)</th>
<th>UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 μm (粒/㎡)</td>
<td></td>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0 μm (粒/㎡)</td>
<td></td>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>L7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>......</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

计算公式：$UCL=M+t \times SE$（说明：见 GB/T 16292-2010 第6章节）

4.5 噪声

<table>
<thead>
<tr>
<th>测量点</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>......</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量值(dB(A))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.6 静压差

<table>
<thead>
<tr>
<th>相对位置</th>
<th>实验室与缓冲间</th>
<th>缓冲间与外界</th>
<th>......</th>
</tr>
</thead>
<tbody>
<tr>
<td>测量值(Pa)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
附录 B

实验室校准结果参考格式

校 准 结 果

1. 测量点分布示意图

(2.2±0.1)m 高度层

(1.5±0.1)m 高度层

(0.8±0.1)m 高度层

2. 校准结果表达

<table>
<thead>
<tr>
<th>校准项目</th>
<th>温度（℃）</th>
<th>湿度（%RH）</th>
</tr>
</thead>
<tbody>
<tr>
<td>设定值</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上偏差</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下偏差</td>
<td></td>
<td></td>
</tr>
<tr>
<td>均匀度</td>
<td></td>
<td></td>
</tr>
<tr>
<td>短期稳定性</td>
<td></td>
<td></td>
</tr>
<tr>
<td>长期稳定性</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. 校准结果不确定度:

温度偏差校准结果不确定度:

湿度偏差校准结果不确定度:

4. 其他参数的测量结果:

<table>
<thead>
<tr>
<th>参数</th>
<th>测量值</th>
</tr>
</thead>
<tbody>
<tr>
<td>照度实测值</td>
<td></td>
</tr>
<tr>
<td>工作区截面风速实测值</td>
<td></td>
</tr>
<tr>
<td>风量实测值</td>
<td></td>
</tr>
<tr>
<td>洁净度实测值</td>
<td></td>
</tr>
<tr>
<td>噪声实测值</td>
<td></td>
</tr>
<tr>
<td>静压差实测值</td>
<td></td>
</tr>
</tbody>
</table>
附录 C

恒温恒湿实验室温度、湿度偏差校准结果不确定度分析

C.1 校准方法

按照本规范对温度、湿度偏差的校准要求，标准器——多路温湿度测量标准装置温度、湿度传感器按规范图 1 测试点要求布置。将环境试验设备设定到所要求的标称温度、湿度，开启运行。试验设备稳定后开始记录设备的温度、湿度示值及各布点温度、湿度值，记录时间间隔为 2min，30min 内共记录 15 组数据。

计算 15 组数据中各测试点实测最高温度平均值与设备标称温度的差值，即为温度上偏差；15 组数据中各测试点实测最低温度平均值与设备标称温度的差值，即为温度下偏差。

计算 15 组数据中各测试点实测最高湿度平均值与设备标称湿度的差值，即为湿度上偏差；15 组数据中各测试点实测最低湿度平均值与设备标称湿度的差值，即为湿度下偏差。

C.2 数学模型

C.2.1 温度偏差公式

\[\Delta t_{\text{max}} = t_{\text{max}} - t_s \] \hspace{2cm} (C.1)

\[\Delta t_{\text{min}} = t_{\text{min}} - t_s \] \hspace{2cm} (C.2)

式中：\(\Delta t_{\text{max}} \) —— 温度上偏差，℃

\(\Delta t_{\text{min}} \) —— 温度下偏差，℃

\(t_{\text{max}} \) —— 各测量点规定时间内测量的最高温度，℃

\(t_{\text{min}} \) —— 各测量点规定时间内测量的最低温度，℃

\(t_s \) —— 实验室设定温度，℃

C.2.2 湿度偏差公式

\[\Delta h_{\text{max}} = h_{\text{max}} - h_s \] \hspace{2cm} (C.3)

\[\Delta h_{\text{min}} = h_{\text{min}} - h_s \] \hspace{2cm} (C.4)

式中：\(\Delta h_{\text{max}} \) —— 湿度上偏差，%RH

\(\Delta h_{\text{min}} \) —— 湿度下偏差，%RH

\(h_{\text{max}} \) —— 各测量点规定时间内测量的最高湿度，%RH

\(h_{\text{min}} \) —— 各测量点规定时间内测量的最低湿度，%RH
由于公式（C.1）和（C.2）、（C.3）和（C.4）含义相似，因此本文仅以温度上偏差和湿度上偏差为例进行不确定度评定。

C.3 灵敏系数

C.3.1 对公式（C.1）各分量求偏导，得到各分量的灵敏系数：

\[c_1 = \frac{\partial \Delta t_{\text{max}}}{\partial t} = 1 \quad c_2 = \frac{\partial \Delta t_{\text{max}}}{\partial t_s} = -1 \]

C.3.2 对公式（C.3）各分量求偏导，得到各分量的灵敏系数：

\[c'_1 = \frac{\partial \Delta H_{\text{max}}}{\partial H} = 1 \quad c'_2 = \frac{\partial \Delta H_{\text{max}}}{\partial H_s} = -1 \]

C.4 标准不确定度分量

不确定度来源：标准器测量重复性及分辨率引入的，标准器修正值引入的，标准器稳定性引入的，实验室设定值分辨率引入的。

C.4.1 标准器引入的不确定度分量

C.4.1.1 标准器温度、湿度测量重复性及分辨率引入的标准不确定度

C.4.1.1.1 标准器温度测量重复性及分辨率引入的标准不确定度的评定

温度测量重复性由10次重复测量得到：

\[
 s_1 = \sqrt{\frac{\sum_{i=1}^{10} (\Delta t_{\text{max}} - \frac{\sum_{i=1}^{10} \Delta t_{\text{max}}}{10})^2}{10-1}} = 0.25^\circ C
\]

标准器温度分辨力为0.01℃，由此引入的标准不确定度为0.0029℃，小于重复性标准偏差。于是：

\[u_{t1} = s_1 = 0.25^\circ C \]

C.4.1.1.2 标准器湿度测量重复性及分辨率引入的标准不确定度的评定

湿度测量重复性由10次重复测量得到：

\[
 s'_1 = \sqrt{\frac{\sum_{i=1}^{10} (\Delta H_{\text{max}} - \frac{\sum_{i=1}^{10} \Delta H_{\text{max}}}{10})^2}{10-1}} = 0.50^\%RH
\]

标准器湿度分辨率为0.1%RH，由此引入的标准不确定度为0.029%RH，小于重复性标准偏差。于是：

\[u'_{t1} = s'_1 = 0.5^\%RH \]

C.4.1.2 标准器温度、湿度修正值引入的标准不确定度的评定
C.4.1.2.1 标准器温度修正值引入的标准不确定度 u_{12} 的评定

标准器温度修正值的不确定度 $U = 0.10^\circ C$，$k = 2$，则:

$$u_{12} = U / k = 0.10 / 2 = 0.05^\circ C$$

C.4.1.2.2 标准器湿度修正值引入的标准不确定度 u_{12}' 的评定

标准器湿度修正值的不确定度 $U' = 1.0\%RH$，$k = 2$，则:

$$u_{12}' = U' / k = 1.0 / 2 = 0.5\%RH$$

C.4.1.3 标准器温度、湿度稳定性引入的标准不确定度 u_{13} 和 u_{13}' 的评定

C.4.1.3.1 标准器温度稳定性引入的标准不确定度 u_{13} 的评定

标准器温度稳定性取经验值 $\pm 0.10^\circ C$，不确定度区间半宽为 $0.10^\circ C$，服从反正弦分布，由此引入的标准不确定度为:

$$u_{13} = \frac{0.10}{\sqrt{2}} = 0.07^\circ C$$

C.4.1.3.2 标准器湿度稳定性引入的标准不确定度 u_{13}' 的评定

标准器湿度稳定性取经验值 $\pm 0.50\%RH$，不确定度区间半宽为 $0.50\%RH$，服从反正弦分布，因此由此引入的标准不确定度为:

$$u_{13}' = \frac{0.50}{\sqrt{2}} = 0.35\%RH$$

C.4.1.4 标准器引入的标准不确定度 u_i 和 u_i' 计算

C.4.1.4.1 标准器温度参数引入的标准不确定度 u_i 的计算

由于 u_{11}、u_{12}、u_{13} 互不相关，因此:

$$u_i = \sqrt{u_{11}^2 + u_{12}^2 + u_{13}^2} = 0.26^\circ C$$

C.4.1.4.2 标准器湿度参数引入的标准不确定度 u_i' 的计算

由于 u_{11}'、u_{12}'、u_{13}' 互不相关，因此:

$$u_i' = \sqrt{u_{11}'^2 + u_{12}'^2 + u_{13}'^2} = 0.79\%RH$$

C.4.2 实验室设定值分辨力引入的标准不确定度分量 u_2 和 u_2'

C.4.2.1 实验室温度设定值分辨率为 $0.1^\circ C$，按均匀分布，

$$u_2 = \frac{0.1}{\sqrt{3}} = 0.03^\circ C$$

C.4.2.2 实验室湿度设定值分辨率为 $0.1\%RH$，按均匀分布，

$$u_2' = \frac{0.1}{\sqrt{3}} = 0.03\%RH$$

C.5 合成标准不确定度的计算
C.5.1 标准不确定度分量汇总表见表 C.1 和 C.2

表 C.1 温度偏差校准标准不确定度分量汇总表

| 标准不确定度分量 | 灵敏系数 c_i | 不确定度来源 | 标准不确定度 u_i 值 | $|c_i|u_i$ |
|-----------------|---------------|--------------|----------------------|---------|
| u_1 | 1 | 温度测量重复性及分辨力 | 0.25℃ | 0.26℃ |
| u_{11} | | 标准器温度修正值 | 0.05℃ | |
| u_{12} | | 标准器温度的稳定性 | 0.07℃ | |
| u_{13} | | | | |
| u_2 | -1 | 温度设定值分辨力 | 0.03℃ | 0.03℃ |

表 C.2 湿度偏差校准标准不确定度分量汇总表

| 标准不确定度分量 | 灵敏系数 c_i | 不确定度来源 | 标准不确定度 u_i 值 | $|c_i|u_i$ |
|-----------------|---------------|--------------|----------------------|---------|
| u_{11} | 1 | 湿度测量重复性及分辨力 | 0.79%RH | 0.79%RH |
| u_{12} | | 标准器湿度修正值 | 0.5%RH | |
| u_{13} | | 标准器湿度的稳定性 | 0.25%RH | |
| u_{14} | | | 0.18%RH | |
| u_2 | -1 | 湿度设定值分辨力 | 0.03%RH | 0.03%RH |

C.5.2 合成标准不确定度的计算

C.5.2.1 温度偏差校准合成标准不确定度 u_c 计算

由于 u_1 和 u_2 互不相关，合成标准不确定度 u_c 按下式计算

$$u_c = \sqrt{[c_1u_1]^2 + [c_2u_2]^2} = 0.26 \, ^\circ C$$

C.5.2.2 湿度偏差校准合成标准不确定度 u'_c 计算
由于u_1和u_2互不相关，合成标准不确定度u_c按下式计算

$$u_c = \sqrt{[c_1 u_1]^2 + [c_2 u_2]^2} = 0.79 \text{%RH}$$

C.6 扩展不确定度定

取包含因子$k=2$，温度上偏差校准不确定度为：$U = k \times u_c = 0.52^\circ\text{C}$，$k=2$

取包含因子$k=2$，湿度上偏差校准不确定度为：$U' = k \times u_c' = 1.6\text{%RH}$，$k=2$